Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Methods Mol Biol ; 2511: 183-200, 2022.
Article in English | MEDLINE | ID: covidwho-1941376

ABSTRACT

Blood serum or plasma proteins are potentially useful in COVID-19 research as biomarkers for risk prediction, diagnosis, stratification, and treatment monitoring. However, serum protein-based biomarker identification and validation is complicated due to the wide concentration range of these proteins, which spans more than ten orders of magnitude. Here we present a combined affinity purification-liquid chromatography mass spectrometry approach which allows identification and quantitation of the most abundant serum proteins along with the nonspecifically bound and interaction proteins. This led to the reproducible identification of more than 100 proteins that were not specifically targeted by the affinity column. Many of these have already been implicated in COVID-19 disease.


Subject(s)
COVID-19 , Serum , Biomarkers , Blood Proteins/chemistry , COVID-19/diagnosis , Chromatography, Affinity/methods , Chromatography, Liquid/methods , Humans , Serum/chemistry , Tandem Mass Spectrometry/methods
2.
Sci Rep ; 12(1): 11867, 2022 07 13.
Article in English | MEDLINE | ID: covidwho-1931494

ABSTRACT

The majority of metabolomics studies to date have utilised blood serum or plasma, biofluids that do not necessarily address the full range of patient pathologies. Here, correlations between serum metabolites, salivary metabolites and sebum lipids are studied for the first time. 83 COVID-19 positive and negative hospitalised participants provided blood serum alongside saliva and sebum samples for analysis by liquid chromatography mass spectrometry. Widespread alterations to serum-sebum lipid relationships were observed in COVID-19 positive participants versus negative controls. There was also a marked correlation between sebum lipids and the immunostimulatory hormone dehydroepiandrosterone sulphate in the COVID-19 positive cohort. The biofluids analysed herein were also compared in terms of their ability to differentiate COVID-19 positive participants from controls; serum performed best by multivariate analysis (sensitivity and specificity of 0.97), with the dominant changes in triglyceride and bile acid levels, concordant with other studies identifying dyslipidemia as a hallmark of COVID-19 infection. Sebum performed well (sensitivity 0.92; specificity 0.84), with saliva performing worst (sensitivity 0.78; specificity 0.83). These findings show that alterations to skin lipid profiles coincide with dyslipidaemia in serum. The work also signposts the potential for integrated biofluid analyses to provide insight into the whole-body atlas of pathophysiological conditions.


Subject(s)
COVID-19 , Sebum , Humans , Lipids/analysis , Metabolomics , Saliva/metabolism , Sebum/metabolism , Serum/chemistry
3.
Sci Rep ; 11(1): 21633, 2021 11 04.
Article in English | MEDLINE | ID: covidwho-1503836

ABSTRACT

Although the serum lipidome is markedly affected by COVID-19, two unresolved issues remain: how the severity of the disease affects the level and the composition of serum lipids and whether serum lipidome analysis may identify specific lipids impairment linked to the patients' outcome. Sera from 49 COVID-19 patients were analyzed by untargeted lipidomics. Patients were clustered according to: inflammation (C-reactive protein), hypoxia (Horowitz Index), coagulation state (D-dimer), kidney function (creatinine) and age. COVID-19 patients exhibited remarkable and distinctive dyslipidemia for each prognostic factor associated with reduced defense against oxidative stress. When patients were clustered by outcome (7 days), a peculiar lipidome signature was detected with an overall increase of 29 lipid species, including-among others-four ceramide and three sulfatide species, univocally related to this analysis. Considering the lipids that were affected by all the prognostic factors, we found one sphingomyelin related to inflammation and viral infection of the respiratory tract and two sphingomyelins, that are independently related to patients' age, and they appear as candidate biomarkers to monitor disease progression and severity. Although preliminary and needing validation, this report pioneers the translation of lipidome signatures to link the effects of five critical clinical prognostic factors with the patients' outcomes.


Subject(s)
COVID-19/metabolism , Lipids/blood , Serum/chemistry , Adult , Aged , Biomarkers/blood , COVID-19/blood , Dyslipidemias/metabolism , Female , Humans , Italy , Lipidomics/methods , Lipids/analysis , Male , Middle Aged , Oxidative Stress/physiology , Prognosis , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Sphingomyelins/blood
5.
Cytotherapy ; 22(8): 458-472, 2020 08.
Article in English | MEDLINE | ID: covidwho-209852

ABSTRACT

BACKGROUND AIMS: Human platelet lysate can replace fetal bovine serum (FBS) for xeno-free ex vivo expansion of mesenchymal stromal cells (MSCs), but pooling of platelet concentrates (PCs) increases risks of pathogen transmission. We evaluated the feasibility of performing nanofiltration of platelet lysates and determined the impact on expansion of bone marrow-derived MSCs. METHODS: Platelet lysates were prepared by freeze-thawing of pathogen-reduced (Intercept) PCs suspended in 65% storage solution (SPP+) and 35% plasma, and by serum-conversion of PCs suspended in 100% plasma. Lysates were added to the MSC growth media at 10% (v/v), filtered and subjected to cascade nanofiltration on 35- and 19-nm Planova filters. Media supplemented with 10% starting platelet lysates or FBS were used as the controls. Impacts of nanofiltration on the growth media composition, removal of platelet extracellular vesicles (PEVs) and MSC expansion were evaluated. RESULTS: Nanofiltration did not detrimentally affect contents of total protein and growth factors or the biochemical composition. The clearance factor of PEVs was >3 log values. Expansion, proliferation, membrane markers, differentiation potential and immunosuppressive properties of cells in nanofiltered media were consistently better than those expanded in FBS-supplemented media. Compared with FBS, chondrogenesis and osteogenesis genes were expressed more in nanofiltered media, and there were fewer senescent cells over six passages. CONCLUSIONS: Nanofiltration of growth media supplemented with two types of platelet lysates, including one prepared from pathogen-reduced PCs, is technically feasible. These data support the possibility of developing pathogen-reduced xeno-free growth media for clinical-grade propagation of human cells.


Subject(s)
Blood Platelets/cytology , Cell Culture Techniques/methods , Filtration , Mesenchymal Stem Cells/cytology , Nanotechnology , Adipogenesis/drug effects , Biomarkers/metabolism , Cell Differentiation/drug effects , Cell Lineage/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Cellular Senescence/drug effects , Culture Media/pharmacology , Extracellular Vesicles/metabolism , Gene Expression Profiling , Humans , Immunophenotyping , Immunosuppression Therapy , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/pharmacology , Mesenchymal Stem Cells/drug effects , Osteogenesis/drug effects , Particle Size , Serum/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL